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Theory of Thermal Conduction in
Thin Ceramic Films1

P. G. Klemens2

The theory of heat conduction in ceramics by phonons, and at high tempera-
tures also by infrared radiation, is reviewed. The phonon mean free path is
limited by three-phonon interactions and by scattering of various imperfections.
Point defects scatter high-frequency phonons; extended imperfections, such as
inclusions, pores, and grain boundaries, affect mainly low-frequency phonons.
Thermal radiation is also scattered by imperfections, but of a larger size, such
as splat boundaries and large pores. Porosity also reduces the effective index of
refraction. For films there are also external boundaries, cracks, and splat boun-
daries, depending on the method of deposition. Examples discussed are cubic
zirconia, titanium oxide, and uranium oxide. Graphite and graphene sheets,
with two-dimensional phonon gas, are discussed briefly.

KEY WORDS: graphene; lattice defects; oxides; phonons; pores; thermal
radiation.

1. INTRODUCTION

Thermal conduction in ceramics is by means of lattice waves. At high tem-
peratures there may be an additional contribution due to radiation, par-
ticularly in large samples. Thin films are influenced by additional factors,
such as the film thickness, the presence of additional imperfections, and
possible variations of structure with depth. Oriented imperfections will
affect the conduction differently in the cases of parallel and perpendicular
heat flow.

The thermal conductivity of bulk samples at ordinary and at high tem-
peratures are reviewed briefly, and the additional scattering processes
encountered in thin films are considered. At low temperatures, size effects,
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including those due to film thickness, become very important. Size effects
can also be significant at ordinary temperatures, even if the film thickness
or grain size is larger than the average phonon mean free path. The effects of
point defects are important, and nonstoichiometric oxides are emphasized.
Finally, the two-dimensional phonon gas is considered, and heat conduc-
tion in a graphene sheet, the thinnest film, will be related to the properties
of graphite and carbon nanotubes.

2. BULK THERMAL CONDUCTIVITY

2.1. Lattice Waves

The lattice waves in solids cover a substantial frequency range. Their
thermal conductivity * can be expressed as an integral over their frequency
| by

*= 1
3 | C(|) v(|) l(|) d| (1)

where C(|) d| is the contribution of waves in the frequency interval d|
about | to the vibrational specific heat per unit volume, v(|) is the group
velocity, and l(|) is the attenuation length or phonon mean free path.
While the specific heat and group velocity are not sensitive to crystal
imperfections, the mean free path is, and it governs both the temperature
dependence and the specimen variability of the thermal conductivity. The
role of phonon interaction processes in ceramics is reviewed briefly. While
phonon heat conduction is emphasized, it must be remembered that ther-
mal radiation or photons can be significant at high temperatures. Because
the photons have a longer wavelength, imperfections will act differently for
them. Small defects are relatively less important for scattering them, while
pores reduce the effective dielectric constant and thus the radiative heat
transfer [1].

Only waves of a high group velocity make a substantial contribution
to thermal conduction. The possible role of optical modes, which are the
relative motions of atoms within a molecular group, have been discussed
elsewhere [2]. The modes of the acoustic branches, which have a high
group velocity, have a frequency range from zero to |m , where in a Debye
approximation

|3
m=

6?2v3

a3
m

(2)
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and where a3
m is the volume of one molecular group of the solid, and v is

the low-frequency limit of the phonon velocity. The contribution of the
acoustic lattice waves to the specific heat per unit volume from the fre-
quency interval d| is C(|) d|, where for |�|m ,

C(|)=
9k

a3
m|3

m

|2 (3)

and where k is the Boltzmann constant.
While C(|) and v(|) are not sensitive to crystal imperfections, the

phonon mean free path l(|) is temperature dependent and is reduced due
to the scattering of phonons by solutes and other imperfections. This
sensitivity holds for bulk specimens and, to an even greater degree, for thin
films. The external boundaries scatter phonons, and thin films usually
contain a larger concentration of various defects.

The intrinsic mean free path, limited by anharmonic energy inter-
change between groups of three waves, is a function of both absolute tem-
perature T and frequency | and can be shown to be, in the limit of high
temperatures, of the form

1
li (|, T )

=BT|2
r2#2 kT

+a3

|2

v|m
(4)

Here a3 is the volume per atom and + the shear modulus, while # is the
Gru� neisen parameter, a measure of the anharmonicity. Substituting li into
Eq. (1), we see that the factor C(|) li (|) in the integrand is independent
of |, and equal frequency intervals make equal contributions to the intrin-
sic conductivity *i . Thus, low frequencies play a larger role in the thermal
conductivity than they do in the specific heat [3]. One obtains

*i=
1
3 |

|m

0
C(|) li (|, T ) v d|=

3ka3
m|m

Bv2T
(5)

From Eq. (5) one can estimate B and thus the magnitude of li if measure-
ments of the intrinsic thermal conductivity are obtainable. There are a few
cases where this is not so, including the important case of cubic zirconia,
which exists only in the stabilized form and contains numerous point
defects (solute cations and oxygen vacancies), which depress the thermal
conductivity. In such cases one must estimate li and *i from Eq. (4) and
then estimate the mean free path, or scattering probability per unit path
length, of the various defects in the specimen, to obtain its lattice thermal
conductivity.
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2.2. Scattering of Phonons by Defects

Various defects scatter lattice waves and reduce the phonon mean free
path. The reciprocals are additive, so that for each frequency |

1
l(|, T )

=
1

li (|, T )
+:

d

1
ld (|)

(6)

where the summation is over all types of defects present, each with a
different variation of ld (|) with frequency |, but not varying with tem-
perature unless the nature or the concentration of defects changes with
temperature, a possibility which should be kept in mind but which is not
discussed here. In general, the scattering probability increases with increas-
ing frequency, and most rapidly for defects which are of a small size. One
can classify defects into point defects, thin sheets, large imperfections, and
boundaries.

Point defects are small compared to the wavelengths of interest or of
atomic dimension; their reciprocal attenuation length is of the form 1�lp(|)
=A|4, where A depends on the nature of the defect and is proportional
to the defect concentration c at low concentrations. They affect l(|) mainly
at the highest frequencies. They include interstitials, solute atoms, and
vacancies. Thin sheets, with a thickness less than the phonon wavelengths,
scatter as |2, but scattering increases with frequency less rapidly at high
frequencies. They include thin platelets and two-dimensional aggregates of
foreign atoms or vacancies. Large imperfections scatter independently of
frequency with a scattering cross section comparable to their geometrical
size or with only a weak frequency dependence. They include colloids and
larger inclusions, and pores. Boundaries, both external and internal boun-
daries between different materials, also scatter independently of frequency
with an attenuation length L given by the average distance between them.
However, boundaries parallel to the temperature gradient are effective only
if they scatter diffusively. The degree of nonspecularity depends on their
roughness and can vary with frequency. Thus, the effective value of L may
be frequency dependent in some cases. In general, however, large imperfec-
tions and boundaries are most important at low frequencies.

For present purposes the defects of greatest interest are point defects
and extended defects or boundaries, each in combination with intrinsic
three-phonon interactions. For point defects one can define a frequency |0

such that li (|0)=lp(|0). Then, writing A in the form appropriate to a sub-
stitutional impurity of mass M+2M in place of M (see Ref. 4),

1
lp

=
a3|4

4?v4 c \2M
M +

2

(7)
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where a3 is the volume per atom, c is the point defect concentration per
atom, and

|2
0=

BT
A

=|2
m

4#2kT
3?+a3

m

c&1 \2M
M +

&2

(8)

Note that |0 increases with temperature and decreases with the strength of
point defect scattering. Using the expressions for l i and lp in the conduc-
tivity integral, one obtains for the reduction in conductivity due to point
defects that [5]

*=*i&$*p=*i \|0

|m+ arctan \|m

|0+ (9)

Equation (9) also applies if |0>|m .
Similarly, if one considers intrinsic scattering, in combination with

that by extended imperfections or boundaries with a mean free path L, and
defines a frequency |B as that for which li (|B)=L, then [6]

|2
B=|2

m

+a3

2#2kT
v

|mL
(10)

and

*=*i&$*B=*i _1&\|B

|m+ arctan \|m

|B+& (11)

In most cases |B<<|m , so that the arctan function is ?�2. Also, |0>>|m ,
so that $*p and $*B are independent of each other, since the reductions
occur in widely separated ranges of frequency. Thus, point defects and
extended imperfections make independent reductions in conductivity,
rather than independent contributions to the thermal resistivity, as is some-
times assumed. However, when the temperature is low and both point
defect and boundary scattering are very strong, |0 and |B approach each
other. In such cases * becomes independent of temperature, varying as
L1�4c&3�4, a result first given by Pomeranchuk [7].

3. RADIATIVE COMPONENT

The effective thermal conductivity between two black parallel slabs,
separated by a distance D and filled with a nonabsorbing dielectric medium
of refractive index n, is

*rad=4n2_DT 3 (12)
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where T is the absolute temperature,

_=
2?5k4

15h3c2=5.67_10&8 W } m&2 } K&4 (13)

is the Stefan�Boltzmann constant, and c is the velocity of light in vacuum.
The maximum value of the radiative component of thermal conductivity, in
W } m&1 } K&1, is thus

*max=2.27_10&7n2DT 3 (14)

where D is in meters. The heat transfer is independent of D, but the factor
D in the conductivity arises because the temperature gradient varies as 1�D
for a given temperature drop.

The radiative component can be reduced by absorption and by scat-
tering within the material, by a reduction of n due to pores, and by reduced
emissivity of the interfaces.

For a given porosity, small pores, of the order of a micron, are more
effective in scattering, while large pores, several microns in diameter,
scatter less but reduce the dielectric constant n2 and, hence, the radiative
component [1]. Very small (submicron) pores or inclusions scatter only
weakly.

The radiative component of thin films is not well understood. For
thermal barrier coatings the interest is in heat flow normal to the film plane
at high temperatures (1000 to 1300 K). Measurements of the materials are
usually performed on specimens of thickness an order of magnitude larger
than the actual coatings. In these measurements the radiative component
forms a significant part of the conductivity at high temperatures. This is
probably responsible for the observations that the thermal conductivity
does not decrease with increasing temperature as rapidly as predicted for
the lattice conductivity, and sometimes not at all [6]. For example, in
recent measurements [1] of yttria-stabilized zirconia (dense specimens of 3
and 8 mol0), the radiative component is probably around 1 W } m&1 } K&1

at 1300 K of a total of 2.4 and 2.0 W } m&1 } K&1, respectively. The
specimens were 1.3 mm thick. Equation (14) with n=2.7 yields a maximum
value of 4 W } m&1 } K&1. The radiative component is thus substantially
reduced by the decreased emissivity into the specimen of the front layer,
which absorbs the laser flash. In actual thermal barrier coatings D is sub-
stantially less, and the radiative component should be even smaller.

The defect structure of thin films depends on the method of deposition.
In plasma sprayed films, splat boundaries are produced, which are of
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irregular shape but lie mainly in the plane of the film. These boundaries
between deformed particles contain small voids and may be regarded as
thin sheets of decreased density, with decreased elastic moduli and a
decreased index of refraction. They scatter photons and reduce the effective
attenuation length for heat transfer across the film. The reflection coef-
ficient of a thin layer having a thickness t and refractive index n2 embedded
in a medium of refractive index n1 is, for perpendicular incidence, given by
[8]

R=
2(n1&n2)2 (n1+n2)2 (1&cos 2;)

(n1+n2)4+(n1&n2)4+(n1+n2)2 (n1&n2)2 cos 2;
(15)

where ;=2?n2 tf�c and f is the frequency. For splat boundaries thin com-
pared to the wavelength in the boundary, i.e., for small ;,

R=4;2 (n1&n2)2

(n1+n2)2 (16)

Thick splat boundaries are not of uniform thickness; therefore, the
oscillatory terms in Eq. (15) can be disregarded, and independently of t

Rr
2(n1&n2)2 (n1+n2)2

(n1+n2)4+(n1&n2)4 (17)

For cracks n1=1, and if the cracks are thick, Eq. (17) applies, so that
the cracks scatter as two independent interfaces. For zirconia, n2=2.7, and
the reflectivity of each interface is about 0.4. In the same material, if a thin
splat boundary is about 1.5 +m thick and has a density about half of the
surrounding material, so that n2&n1=0.9, the maximum reflectivity occurs
when ;=?�2, i.e., when f =c�(4n2 t) or 2_1013 Hz. At that frequency
Rr0.2 and averages about 0.1 over a wide frequency range. Cracks scatter
more strongly than splat boundaries. However, splat boundaries are more
numerous than cracks in plasma sprayed films.

In films grown by chemical vapor deposition, growth is in columns
perpendicular to the film plane, and there may be empty spaces or cracks
between these columns. Cracks of this orientation have only a small scat-
tering effect for heat flow across the film, but when at a high concentration,
they will reduce the average dielectric constant n2 and thus reduce the
radiative heat flow by the same factor as their fractional volume density.
Radiative heat flow in the plane of the film will also be reduced due to
scattering by these cracks in addition to the reduction of the dielectric
constant.
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4. LATTICE COMPONENT OF THIN FILMS

4.1. External Boundaries

In addition to all the factors which control the lattice conductivity in
bulk samples, there are additional scattering processes. Obviously there
may be more imperfections which scatter phonons, and there will be reduc-
tions in the phonon mean free path due to the external boundaries of the
film. Again, one must distinguish between heat flow across the film and
heat flow in the plane of the film. In heat flow normal to the film plane,
the phonon mean free path is terminated at the external boundaries, so
that L in Eq. (10) should be identified with the film thickness. In heat flow
parallel to the film, the appropriate mean free path Lex is increased, since
only diffuse reflection processes limit the phonon mean free path. Thus,

1
Lex

r(1&s)
1
D

(18)

where D is the film thickness, and s is the fraction of phonons reflected
specularly. The diffuse fraction (1&s) generally decreases with decreasing
frequency and depends on the roughness of the boundary. If there are also
internal defects, 1�Lex is one of the terms which contribute to Eq. (6).
External boundary scattering is important at low temperatures. At high
temperatures, it is usually significant only for very thin (submicron) films.

4.2. Oxide Stoichiometry

Although there is a lack of observed data on the thermal conductivity
of oxide films, one can draw on studies of the effect of oxygen
stoichiometry in bulk samples to predict its effect in thin films. Only the
lattice component is discussed, since the radiative component will be
relatively small. The three systems discussed, uranium oxide, titanium
oxide, and cubic zirconia, are each representative of different behavior.

In uranium oxide, and presumably in other actinide oxides, the oxygen
ions are larger than the cations, and the oxygen sublattice is very stable.
Changes in oxygen concentration, achieved by decreasing the oxygen
chemical potential, do not produce oxygen vacancies; on the contrary, the
thermal conductivity actually increases. However, an increase in oxygen
content produces point defects, and the thermal conductivity is reduced
[9]. The increase in thermal conductivity in substoichiometric UO2 is
attributed to the formation of metal colloids, large enough to enhance
conduction. A similar effect has been seen in Simfuel, a mixture of oxides
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which simulates the ``burn-up'' of UO2 . Some of these oxides have only
limited solid solubility, and the excess solute cations also form colloids that
increase the conductivity [10]. In the case of hyperstoichiometric UO2 ,
where the thermal conductivity is reduced, it is not clear whether the
responsible point defects are interstitial oxygen [3] or cation vacancies.
Further work in this area is needed.

The situation seems clearer in the case of oxygen-deficient TiO2 , where
thermal conductivity data exist [11] and can be compared with the theory
of Ratsifaritana and Klemens [12]. A vacancy scatters owing to the missing
linkages, which belong to two atom sites at the missing atom, and also
the missing kinetic energy of the missing atom. Thus, in Eqs. (7) and (8),
2M�M becomes

\2M
M +vac

= &2&
Mvac

Ma
(19)

where Mvac is the missing mass and Ma is the average atomic mass. For an
oxygen vacancy in TiO2 , (2M�M)vac= &2.60. Substituting this into Eq. (8),
one can calculate (|0 �|m) and *�*i from Eq. (9). For oxygen vacancy con-
centrations from 0.005 to 0.037 per molecule, the theoretical reductions
[13] agree well with the observations of Siebeneck et al. [11].

Cubic zirconia, which can be stabilized by the addition of divalent or
trivalent solutes, is used for fuel cells and oxygen sensors as well as for
thermal barrier coatings, preferably in thin layers. It seems that the forma-
tion energy of oxygen vacancies is low, so that these solutes are accom-
panied by these vacancies. This is responsible for high values of oxygen
diffusivity, and at the same time for the low thermal conductivity [6]. The
stability of the cubic phase is presumably due to the entropy of solution
of solutes and vacancies. Thermal conductivity measurements have been
performed mostly on thick samples, and this enhances the radiative com-
ponent. The conductivity is found to be sensitive to cracks [14]; both
radiation and lattice conduction are presumably affected.

5. THE TWO-DIMENSIONAL PHONON GAS

The ultimate thin film is a monatomic layer; its vibrations form a two-
dimensional phonon gas. In two dimensions the low frequencies play a
larger role in heat transport than in three dimensions. Phonons in graphite
behave like a two-dimensional gas over most of the frequency range of the
acoustic modes, except below 4 THz, where there is propagation in the
c-axis with very low velocities, since coupling between hexagonal planes is
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very weak. In two dimensions the spectral specific heat has the form
C(|) B |, but the intrinsic mean free path li (|, T ) has the same frequency
dependence as in three dimensions, for it is governed by the anharmonic
transition probabilities, and not by the locus of permitted three-phonon
interactions in momentum space [15]. Thus, li (|, T ) B |&2T 1, C(|) li (|)
B |&1, and the intrinsic thermal conductivity integral has a logarithmic
divergence at low frequencies. In graphite this divergence is removed at the
angular frequency |c , where the phonon spectrum changes from two-
dimensional to three-dimensional behavior, that is, at |c=2.51_1013 s&1.
Therefore, the intrinsic thermal conductivity is [15]

*i=
\v4

#2|mT
ln \|m

|c+ (20)

Here v is the wave velocity in the basal or hexagonal plane, \ is the density,
# is the Gru� neisen anharmonicity parameter, and |m is the maximum fre-
quency of the acoustic branch in a Debye approximation. With #=2, |m=
2.88_1014 s&1, \=2.26_103 kg } m3, since ln(|m �|c)=2.44, * i=5.73_
105�T W } m&1 } K&1, in agreement with measurements.

The single graphene sheet is two-dimensional down to zero frequency,
since there are no waves propagating outside the basal plane. The
logarithmic divergence is thus removed by a limitation on the mean free
path. In an unsupported sheet, the mean free path cannot exceed the
smallest linear dimension L of the sheet. Since

li=
1

2#2

Mv2

kT
|mv
|2 (21)

where M is the atomic mass, the condition li (|B , T )=L yields a cutoff for
the divergence at a frequency |B given by

|2
B=

1
2#2

Mv2

kT
|mv

L
(22)

or |B=5.8_1011L&1�2T 1�2, where L and T are in meters and K, respec-
tively. For L=1 mm and T=300 K, |B=1.06_1012 s&1. The thermal
conductivity of a free-standing sheet with 1 mm smallest dimension is then
*=4.4_104 W } m&1 } K&1. Since the thickness of this single layer is
3.3_10&10 m, the conductance of such a sheet is about 1.5_10&5 W } K&1.
If the graphene sheet lies on a substrate which has a lower phonon velocity
than that of graphene (v=1.86_104 m } s&1), its conductivity is reduced,
because wave energy leaks into the substrate. This increases |B by an
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amount which depends on the velocity difference and reduces the conduc-
tivity by 20 to 500. If the substrate is itself a thin film of low thermal
conductivity, the additional conductance of the graphene sheet may be just
observable.
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